
ADosDanger

ADosDanger ii

COLLABORATORS

TITLE :

ADosDanger

ACTION NAME DATE SIGNATURE

WRITTEN BY August 13, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ADosDanger iii

Contents

1 ADosDanger 1

1.1 AmigaTalk to AmigaDOS Help: . 1

1.2 VERY DANGEROUS AmigaDOS Methods: . 2

1.3 writeFile (DANGEROUS): . 3

1.4 waitPkt (VERY DANGEROUS): . 4

1.5 unLoadSeg (VERY DANGEROUS): . 4

1.6 systemTagList (VERY DANGEROUS): . 5

1.7 setVBuf (DANGEROUS): . 6

1.8 setFileSysTask (VERY DANGEROUS): . 7

1.9 setFileSize (DANGEROUS): . 8

1.10 setConsoleTask (VERY DANGEROUS): . 8

1.11 setArgStr (DANGEROUS): . 9

1.12 sendPkt (VERY DANGEROUS): . 10

1.13 selectOutput (DANGEROUS): . 10

1.14 selectInput (DANGEROUS): . 11

1.15 seekFile (DANGEROUS): . 11

1.16 runCommand (DANGEROUS): . 12

1.17 replyPkt (DANGEROUS): . 13

1.18 remSegment (VERY DANGEROUS): . 14

1.19 remDosEntry (VERY DANGEROUS): . 14

1.20 remAssignList (VERY DANGEROUS): . 15

1.21 newLoadSeg (VERY DANGEROUS): . 16

1.22 loadSeg (VERY DANGEROUS): . 17

1.23 internalUnLoadSeg (VERY DANGEROUS): . 17

1.24 internalLoadSeg (VERY DANGEROUS): . 18

1.25 inhibit (DANGEROUS): . 20

1.26 fWrite (DANGEROUS): . 20

1.27 freeDosObject (DANGEROUS): . 21

1.28 freeDosEntry (DANGEROUS): . 21

1.29 freeDeviceProc (DANGEROUS): . 22

ADosDanger iv

1.30 freeArgs (DANGEROUS): . 23

1.31 format (VERY DANGEROUS): . 23

1.32 exitProgram (DANGEROUS): . 24

1.33 doPacket (VERY DANGEROUS): . 24

1.34 deviceProc (DANGEROUS): . 26

1.35 deleteVar (DANGEROUS): . 26

1.36 deleteFile (VERY DANGEROUS): . 27

1.37 CreateProc (DANGEROUS): . 28

1.38 createNewProc (DANGEROUS): . 29

1.39 cliInitRun (DANGEROUS): . 30

1.40 cliInitNewcli (DANGEROUS): . 31

1.41 attemptLockDosList (DANGEROUS): . 32

1.42 allocDosObject (DANGEROUS): . 33

1.43 addSegment (VERY DANGEROUS): . 34

1.44 addDosEntry (DANGEROUS): . 34

ADosDanger 1 / 35

Chapter 1

ADosDanger

1.1 AmigaTalk to AmigaDOS Help:

WARNING: Improper usage of these Methods will (at the bare
minimum), result in the Operating System hanging
up, which could result in loss of data. This is
the least of what could happen! Turn back now!

DANGEROUS AmigaDOS Functions/AmigaTalk Methods:

writeFile

setVBuf

setFileSize

setArgStr

selectOutput

selectInput

seekFile

runCommand

replyPkt

inhibit

fWrite

freeDosObject

freeDosEntry

freeDeviceProc

freeArgs

ADosDanger 2 / 35

exitProgram
-- Avoid like the plague!

deviceProc

deleteVar

createNewProc

cliInitRun

cliInitNewcli

attemptLockDosList

allocDosObject

addDosEntry
See Also,

VERY DANGEROUS METHODS

1.2 VERY DANGEROUS AmigaDOS Methods:

WARNING: Improper usage of these Methods will (at the bare
minimum), result in the Operating System hanging
up, which could result in loss of data. This is
the least of what could happen! Turn back now!

VERY DANGEROUS AmigaDOS Functions/AmigaTalk Methods:

waitPkt

unLoadSeg

systemTagList

setFileSysTask

setConsoleTask

sendPkt

remSegment

remDosEntry

remAssignList

newLoadSeg

loadSeg

internalUnLoadSeg

ADosDanger 3 / 35

internalLoadSeg

format
-- Are you out of your tree??

doPacket

deleteFile

addSegment

1.3 writeFile (DANGEROUS):

NAME
Write -- Write bytes of data to a file

SYNOPSIS
LONG returnedLength = Write(BPTR file, void *buffer, LONG length);

FUNCTION
Write writes bytes of data to the opened file ’file’. ’length’
indicates the length of data to be transferred; ’buffer’ is a
pointer to the buffer. The value returned is the length of
information actually written. So, when ’length’ is greater than
zero, the value of ’length’ is the number of characters written.
Errors are indicated by a value of -1.

Note: This is an unbuffered routine (the request is passed directly
to the filesystem.) Buffered I/O is more efficient for small
reads and writes; see FPutC.

INPUTS
file - BCPL pointer to a file handle
buffer - pointer to the buffer
length - integer

RESULT
returnedLength - integer

SEE ALSO
Read ,

Seek
,

Open , Close ,
FPutC

AMIGATALK INTERFACE (DangerousDOS Class):

writeFile: bptrFileHandle with: aBuffer ofSize: length

WARNING: Make sure that aBuffer is a String of length bytes!

ADosDanger 4 / 35

1.4 waitPkt (VERY DANGEROUS):

NAME
WaitPkt -- Waits for a packet to arrive at your pr_MsgPort

SYNOPSIS
struct DosPacket *packet = WaitPkt(void);

FUNCTION
Waits for a packet to arrive at your pr_MsgPort. If anyone has
installed a packet wait function in pr_PktWait, it will be called.
The message will be automatically GetMsg()ed so that it is no longer
on the port. It assumes the message is a dos packet. It is NOT
guaranteed to clear the signal for the port.

RESULT
packet - the packet that arrived at the port (from ln_Name of message).

SEE ALSO

SendPkt
,
DoPkt

, AbortPkt

AMIGATALK INTERFACE (VeryDangerousDOS Class):

waitForPacket

1.5 unLoadSeg (VERY DANGEROUS):

NAME
UnLoadSeg -- Unload a seglist previously loaded by LoadSeg

SYNOPSIS
void UnLoadSeg(BPTR seglist);

FUNCTION
Unload a seglist loaded by LoadSeg. ’seglist’ may be zero.
Overlaid segments will have all needed cleanup done, including
closing files.

INPUTS
seglist - BCPL pointer to a segment identifier

SEE ALSO

LoadSeg
,
InternalLoadSeg

,

ADosDanger 5 / 35

InternalUnLoadSeg

AMIGATALK INTERFACE (VeryDangerousDOS Class):

unLoadSegment: bptrSegList

1.6 systemTagList (VERY DANGEROUS):

NAME
SystemTagList -- Have a shell execute a command line

SYNOPSIS
LONG error = SystemTagList(char *command, struct TagItem *tags);

FUNCTION
Similar to Execute(), but does not read commands from the input
filehandle. Spawns a Shell process to execute the command, and
returns the returncode the command produced, or -1 if the command
could not be run for any reason. The input and output filehandles
will not be closed by System, you must close them (if needed) after
System returns, if you specified them via SYS_Input or SYS_Output.

By default the new process will use your current Input() and Output()
filehandles. Normal Shell command-line parsing will be done
including redirection on ’command’. The current directory and path
will be inherited from your process. Your path will be used to find
the command (if no path is specified).

Note that you may NOT pass the same filehandle for both SYS_Input
and SYS_Output. If you want input and output to both be to the same
CON: window, pass a SYS_Input of a filehandle on the CON: window,
and pass a SYS_Output of NULL. The shell will automatically set
the default Output() stream to the window you passed via SYS_Input,
by opening "*" on that handler.

If used with the SYS_Asynch flag, it WILL close both it’s input and
output filehandles after running the command (even if these were
your Input() and Output()!)

Normally uses the boot (ROM) shell, but other shells can be specified
via SYS_UserShell and SYS_CustomShell. Normally, you should send
things written by the user to the UserShell. The UserShell defaults
to the same shell as the boot shell.

The tags are passed through to CreateNewProc() (tags that conflict
with SystemTagList() will be filtered out). This allows setting
things like priority, etc for the new process. The tags that are
currently filtered out are:

NP_Seglist, NP_FreeSeglist, NP_Entry
NP_Input, NP_Output, NP_CloseInput
NP_CloseOutput, NP_HomeDir, NP_Cli

ADosDanger 6 / 35

INPUTS
command - Program and arguments
tags - see <dos/dostags.h>. Note that both SystemTagList()-

specific tags and tags from CreateNewProc() may be passed.

RESULT
error - 0 for success, result from command, or -1. Note that on

error, the caller is responsible for any filehandles or other
things passed in via tags. -1 will only be returned if
dos could not create the new shell. If the command is not
found the shell will return an error value, normally RETURN_ERROR.

SEE ALSO
Execute ,

CreateNewProc
,

Input , Output ,
<dos/dostags.h>

AMIGATALK INTERFACE (VeryDangerousDOS Class):

systemCommandTagList: commandString: tags: tagArray

1.7 setVBuf (DANGEROUS):

NAME
SetVBuf -- set buffering modes and size

SYNOPSIS
LONG error = SetVBuf(BPTR fh, char *buff, LONG type, LONG size);

FUNCTION
Changes the buffering modes and buffer size for a filehandle.
With buff == NULL, the current buffer will be deallocated and a
new one of (approximately) size will be allocated. If buffer is
non-NULL, it will be used for buffering and must be at least
max(size, 208) bytes long, and MUST be longword aligned. If size
is -1, then only the buffering mode will be changed.

Note that a user-supplied buffer will not be freed if it is later
replaced by another SetVBuf() call, nor will it be freed if the
filehandle is closed.

Has no effect on the buffersize of filehandles that were not created
by

AllocDosObject()
.

INPUTS
fh - Filehandle
buff - buffer pointer for buffered I/O or NULL. MUST be LONG-aligned!
type - buffering mode (see <dos/stdio.h>)
size - size of buffer for buffered I/O (sizes less than 208 bytes

ADosDanger 7 / 35

will be rounded up to 208), or -1.

RESULT
error - 0 if successful. NOTE: opposite of most dos functions!

NOTE: fails if someone has replaced the buffer without using SetVBuf()
- RunCommand() does this. Remember to check error before
freeing user-supplied buffers!

BUGS
Not implemented until after V39. From V36 up to V39, always
returned 0.

SEE ALSO
FputC , FGetC ,
UnGetC , Flush ,
FRead ,

FWrite
,

FGets , FPuts ,

AllocDosObject

AMIGATALK INTERFACE (DangerousDOS Class):

setVBuf: bptrFileHandle to: aBuffer type: t bufferSize: size

1.8 setFileSysTask (VERY DANGEROUS):

NAME
SetFileSysTask -- Sets the default filesystem for the process

SYNOPSIS
struct MsgPort *oldport = SetFileSysTask(struct MsgPort *port);

FUNCTION
Sets the default filesystem task’s port (pr_FileSystemTask) for the
current process.

INPUTS
port - The pr_MsgPort of the default filesystem for the process

RESULT
oldport - The previous FileSysTask value

SEE ALSO
GetFileSysTask , Open

AMIGATALK INTERFACE (VeryDangerousDOS Class):

setFileSystemTask: msgPort

ADosDanger 8 / 35

1.9 setFileSize (DANGEROUS):

NAME
SetFileSize -- Sets the size of a file

SYNOPSIS
LONG newsize = SetFileSize(BPTR fh, LONG offset, LONG mode);

FUNCTION
Changes the file size, truncating or extending as needed. Not all
handlers may support this; be careful and check the return code. If

the file is extended, no values should be assumed for the new bytes.
If the new position would be before the filehandle’s current position
in the file, the filehandle will end with a position at the
end-of-file. If there are other filehandles open onto the file, the
new size will not leave any filehandle pointing past the end-of-file.
You can check for this by looking at the new size (which would be
different than what you requested).

The seek position should not be changed unless the file is made
smaller than the current seek position. However, see BUGS.

Do NOT count on any specific values to be in any extended area.

INPUTS
fh - File to be truncated/extended.
offset - Offset from position determined by mode.
mode - One of OFFSET_BEGINNING, OFFSET_CURRENT, or OFFSET_END.

RESULT
newsize - position of new end-of-file or -1 for error.

BUGS
The RAM: filesystem and the normal Amiga filesystem act differently
in where the file position is left after SetFileSize(). RAM: leaves

you at the new end of the file (incorrectly), while the Amiga ROM
filesystem leaves the seek position alone, unless the new position
is less than the current position, in which case you’re left at the
new EOF.

The best workaround is to not make any assumptions about the seek
position after SetFileSize().

SEE ALSO

Seek

AMIGATALK INTERFACE (DangerousDOS Class):

setFileSize: bptrFileHandle at: offset mode: mode

1.10 setConsoleTask (VERY DANGEROUS):

ADosDanger 9 / 35

NAME
SetConsoleTask -- Sets the default console for the process

SYNOPSIS
struct MsgPort *oldport = SetConsoleTask(struct MsgPort *port);

FUNCTION
Sets the default console task’s port (pr_ConsoleTask) for the
current process.

INPUTS
port - The pr_MsgPort of the default console handler for the process

RESULT
oldport - The previous ConsoleTask value.

SEE ALSO
GetConsoleTask , Open

AMIGATALK INTERFACE (VeryDangerousDOS Class):

setConsoleTask: msgPort

1.11 setArgStr (DANGEROUS):

NAME
SetArgStr -- Sets the arguments for the current process

SYNOPSIS
BOOL success = SetArgStr(char *ptr);

FUNCTION
Sets the arguments for the current program. The ptr MUST be reset
to it’s original value before process exit. So save the original
ptr BEFORE calling this funcion!

INPUTS
ptr - pointer to new argument string.

RESULT
success (DOSTRUE) or failure (FALSE).

SEE ALSO
GetArgStr ,

RunCommand

AMIGATALK INTERFACE (DangerousDOS Class):

setArgumentString: argString

ADosDanger 10 / 35

1.12 sendPkt (VERY DANGEROUS):

NAME
SendPkt -- Sends a packet to a handler

SYNOPSIS
void SendPkt(struct DosPacket *packet,

struct MsgPort *port,
struct MsgPort *replyport);

FUNCTION
Sends a packet to a handler and does not wait. All fields in the
packet must be initialized before calling this routine. The packet
will be returned to replyport. If you wish to use this with

WaitPkt()
, use the address of your pr_MsgPort for replyport.

INPUTS
packet - packet to send, must be initialized and have a message.
port - pr_MsgPort of handler process to send to.
replyport - MsgPort for the packet to come back to.

NOTES
Callable from a task.

SEE ALSO

DoPkt
,
WaitPkt

,

AllocDosObject
,
FreeDosObject

,
AbortPkt

AMIGATALK INTERFACE (VeryDangerousDOS Class):

sendPacket: dosPacket to: msgPort replyTo: replyPort

1.13 selectOutput (DANGEROUS):

NAME
SelectOutput -- Select a filehandle as the default output channel

SYNOPSIS
BPTR old_fh = SelectOutput(BPTR fh);

FUNCTION
Set the current output as the default output for the process.

ADosDanger 11 / 35

This changes the value returned by Output(). old_fh should
be closed or saved as needed.

INPUTS
fh - Newly desired output handle

RESULT
old_fh - Previous current output

SEE ALSO
Output ,

SelectInput
,

Input

AMIGATALK INTERFACE (DangerousDOS Class):

selectOutput: bptrFileHandle

1.14 selectInput (DANGEROUS):

NAME
SelectInput -- Select a filehandle as the default input channel

SYNOPSIS
BPTR old_fh = SelectInput(BPTR fh);

FUNCTION
Set the current input as the default input for the process.
This changes the value returned by Input(). old_fh should
be closed or saved as needed.

INPUTS
fh - Newly default input handle

RESULT
old_fh - Previous default input filehandle

SEE ALSO
Input ,

SelectOutput
,

Output

AMIGATALK INTERFACE (DangerousDOS Class):

selectInput: bptrFileHandle

1.15 seekFile (DANGEROUS):

ADosDanger 12 / 35

NAME
Seek -- Set the current position for reading and writing

SYNOPSIS
LONG oldPosition = Seek(BPTR file, LONG position, LONG mode);

FUNCTION
Seek sets the read/write cursor for the file ’file’ to the
position ’position’. This position is used by both Read() and

Write() as a place to start reading or writing. The result is the
current absolute position in the file, or -1 if an error occurs, in
which case IoErr() can be used to find more information. ’mode’ can
be OFFSET_BEGINNING, OFFSET_CURRENT or OFFSET_END. It is used to
specify the relative start position. For example, 20 from current
is a position 20 bytes forward from current, -20 is 20 bytes back
from current.

So that to find out where you are, seek zero from current. The end
of the file is a Seek() positioned by zero from end. You cannot
Seek() beyond the end of a file.

INPUTS
file - BCPL pointer to a file handle
position - integer
mode - integer

RESULT
oldPosition - integer

BUGS
The V36 and V37 ROM filesystem (and V36/V37 l:fastfilesystem)
returns the current position instead of -1 on an error. It sets

IoErr() to 0 on success, and an error code on an error. This bug
was fixed in the V39 filesystem.

SEE ALSO
Read ,

Write
,

SetFileSize

AMIGATALK INTERFACE (DangerousDOS Class):

seek: bptrFileHandle to: position mode: mode

1.16 runCommand (DANGEROUS):

NAME
RunCommand -- Runs a program using the current process

SYNOPSIS
LONG rc = RunCommand(BPTR seglist, ULONG stacksize,

ADosDanger 13 / 35

char *argptr, ULONG argsize);

FUNCTION
Runs a command on your process/cli. Seglist may be any language,
including BCPL programs. Stacksize is in bytes. argptr is a null-

terminated string, argsize is its length. Returns the returncode the
program exited with in d0. Returns -1 if the stack couldn’t be
allocated.

NOTE: The argument string MUST be terminated with a newline to work
properly with ReadArgs() and other argument parsers.

RunCommand also takes care of setting up the current input filehandle
in such a way that ReadArgs() can be used in the program, and restores
the state of the buffering before returning. It also sets the value
returned by GetArgStr(), and restores it before returning. NOTE:
the setting of the argument string in the filehandle was added in V37.

It’s usually appropriate to set the command name (via
SetProgramName()) before calling RunCommand(). RunCommand() sets

the value returned by GetArgStr() while the command is running.

INPUTS
seglist - Seglist of command to run.
stacksize - Number of bytes to allocate for stack space
argptr - Pointer to argument command string.
argsize - Number of bytes in argument command.

RESULT
rc - Return code from executed command. -1 indicates failure

SEE ALSO

CreateNewProc
,
SystemTagList

,
Execute , GetArgStr ,
SetProgramName , ReadArgs

AMIGATALK INTERFACE (DangerousDOS Class):

runCommand: bptrSegmentList args: argString count: argSize stack: stackSize

1.17 replyPkt (DANGEROUS):

NAME
ReplyPkt -- replies a packet to the person who sent it to you

SYNOPSIS
void ReplyPkt(struct DosPacket *packet, LONG result1, LONG result2);

FUNCTION
This returns a packet to the process which sent it to you. In

ADosDanger 14 / 35

addition, puts your pr_MsgPort address in dp_Port, so using ReplyPkt()
again will send the message to you. (This is used in "ping-ponging"
packets between two processes). It uses result 1 & 2 to set the
dp_Res1 and dp_Res2 fields of the packet.

INPUTS
packet - packet to reply, assumed to set up correctly.
result1 - first result
result2 - secondary result

SEE ALSO

DoPkt
,
SendPkt

,

WaitPkt
, IoErr

AMIGATALK INTERFACE (DangerousDOS Class):

replyPacket: dosPacketObject primaryResult: result1 secondaryResult: result2

1.18 remSegment (VERY DANGEROUS):

NAME
RemSegment - Removes a resident segment from the resident list

SYNOPSIS
BOOL success = RemSegment(struct Segment *segment);

FUNCTION
Removes a resident segment from the Dos resident segment list,
unloads it, and does any other cleanup required. Will only succeed
if the seg_UC (usecount) is 0.

INPUTS
segment - the segment to be removed

SEE ALSO
FindSegment ,

AddSegment

AMIGATALK INTERFACE (VeryDangerousDOS Class):

removeSegment: segmentObject

1.19 remDosEntry (VERY DANGEROUS):

ADosDanger 15 / 35

NAME
RemDosEntry -- Removes a Dos List entry from it’s list

SYNOPSIS
BOOL success = RemDosEntry(struct DosList *dlist);

FUNCTION
This removes an entry from the Dos Device list. The memory associated
with the entry is NOT freed. NOTE: you must have locked the Dos List

with the appropriate flags before calling this routine. Handler
writers should see the AddDosEntry() caveats about locking and use
a similar workaround to avoid deadlocks.

INPUTS
dlist - Device list entry to be removed.

SEE ALSO

AddDosEntry
, FindDosEntry ,

NextDosEntry , LockDosList ,
MakeDosEntry ,

FreeDosEntry

AMIGATALK INTERFACE (VeryDangerousDOS Class):

removeDosEntry: dosList

1.20 remAssignList (VERY DANGEROUS):

NAME
RemAssignList -- Remove an entry from a multi-dir assign

SYNOPSIS
BOOL success = RemAssignList(char *name, BPTR lock);

FUNCTION
Removes an entry from a multi-directory assign. The entry removed is
the first one for which SameLock with ’lock’ returns that they are on
the same object. The lock for the entry in the list is unlocked (not
the entry passed in).

INPUTS
name - Name of device to remove lock from (without trailing ’:’)
lock - Lock associated with the object to remove from the list

BUGS
In V36 through V39.23 dos, it would fail to remove the first lock
in the assign. Fixed in V39.24 dos (after the V39.106 kickstart).

SEE ALSO
Lock , AssignLock ,
AssignPath , AssignLate ,

ADosDanger 16 / 35

DupLock , AssignAdd ,
UnLock

AMIGATALK INTERFACE (VeryDangerousDOS Class):

removeAssignList: assignmentName from: bptrLock

1.21 newLoadSeg (VERY DANGEROUS):

NAME
NewLoadSeg -- Improved version of LoadSeg for stacksizes

SYNOPSIS
BPTR seglist = NewLoadSeg(char *file, struct TagItem *tags);

FUNCTION
Does a LoadSeg on a file, and takes additional actions based on the
tags supplied.

Clears unused portions of Code and Data hunks (as well as BSS hunks).
(This also applies to InternalLoadSeg() and LoadSeg()).

NOTE to overlay users: NewLoadSeg() does NOT return seglist in
both D0 and D1, as

LoadSeg
does. The current ovs.asm uses LoadSeg(),

and assumes returns are in D1. We will support this for LoadSeg() ONLY.

INPUTS
file - Filename of file to load
tags - pointer to tagitem array

RESULT
seglist - Seglist loaded, or NULL

BUGS
No tags are currently defined.

SEE ALSO

LoadSeg
,
UnLoadSeg

,

InternalLoadSeg
,
InternalUnLoadSeg

AMIGATALK INTERFACE (VeryDangerousDOS Class):

newLoadSegment: fileName tags: tagArray

ADosDanger 17 / 35

1.22 loadSeg (VERY DANGEROUS):

NAME
LoadSeg -- Scatterload a loadable file into memory

SYNOPSIS
BPTR seglist = LoadSeg(char *name)

FUNCTION
The file ’name’ should be a load module produced by the linker.
LoadSeg() scatterloads the CODE, DATA and BSS segments into memory,

chaining together the segments with BPTR’s on their first words.
The end of the chain is indicated by a zero. There can be any number
of segments in a file. All necessary re-location is handled by
LoadSeg().

In the event of an error any blocks loaded will be unloaded and a
NULL result returned.

If the module is correctly loaded then the output will be a pointer
at the beginning of the list of blocks. Loaded code is unloaded via
a call to UnLoadSeg().

INPUTS
name - pointer to a null-terminated string

RESULT
seglist - BCPL pointer to a seglist

SEE ALSO

UnLoadSeg
,
InternalLoadSeg

,

InternalUnLoadSeg
,
CreateProc

,

CreateNewProc
,
NewLoadSeg

.

AMIGATALK INTERFACE (VeryDangerousDOS Class):

loadSegment: segmentName

1.23 internalUnLoadSeg (VERY DANGEROUS):

NAME

ADosDanger 18 / 35

InternalUnLoadSeg -- Unloads a seglist loaded with InternalLoadSeg()

SYNOPSIS
BOOL success = InternalUnLoadSeg(BPTR seglist,

void (*FreeFunc)(char *, ULONG)
);

FUNCTION
Unloads a seglist using freefunc to free segments. Freefunc is called
as for InternalLoadSeg. NOTE: Will call Close() for overlaid
seglists.

INPUTS
seglist - Seglist to be unloaded
FreeFunc - Function called to free memory

RESULT
success - returns whether everything went OK (since this may close

files). Also returns FALSE if seglist was NULL.

BUGS
Really should use tags

SEE ALSO

LoadSeg
,
UnLoadSeg

,

InternalLoadSeg
,
NewLoadSeg

,
Close

AMIGATALK INTERFACE (VeryDangerousDOS Class):

internalUnLoadSegment: bptrSegList freeFuncPtr: freeFunc

1.24 internalLoadSeg (VERY DANGEROUS):

NAME
InternalLoadSeg -- Low-level load routine

SYNOPSIS
BPTR seglist = InternalLoadSeg(BPTR fh,

BPTR table,
LONG *functionarray,
LONG *stack

);

FUNCTION
Loads from fh. Table is used when loading an overlay, otherwise

ADosDanger 19 / 35

should be NULL. Functionarray is a pointer to an array of functions.
Note that the current Seek position after loading may be at any point
after the last hunk loaded. The filehandle will not be closed. If a
stacksize is encoded in the file, the size will be stuffed in the
LONG pointed to by stack. This LONG should be initialized to your
default value: InternalLoadSeg() will not change it if no stacksize
is found. Clears unused portions of Code and Data hunks (as well as
BSS hunks). (This also applies to LoadSeg() and NewLoadSeg()).

If the file being loaded is an overlaid file, this will return
-(seglist). All other results will be positive.

NOTE to overlay users: InternalLoadSeg() does NOT return seglist in
both D0 and D1, as LoadSeg does. The current ovs.asm uses LoadSeg(),
and assumes returns are in D1. We will support this for LoadSeg()
ONLY.

INPUTS
fh - Filehandle to load from.
table - When loading an overlay, otherwise ignored.
functionarray - Array of function to be used for read, alloc, and free.

FuncTable[0]->Actual = ReadFunc(readhandle, buffer, length), DOSBase
D0 D1 D2 D3 A6

FuncTable[1]->Memory = AllocFunc(size, flags), Execbase
D0 D0 D1 A6

FuncTable[2]->FreeFunc(memory, size), Execbase
A1 D0 A6

stack - Pointer to storage (ULONG) for stacksize.

RESULT
seglist - Seglist loaded or NULL. NOT returned in D1!

BUGS
Really should use tags.

SEE ALSO

LoadSeg
,
UnLoadSeg

,

NewLoadSeg
,
InternalUnLoadSeg

AMIGATALK INTERFACE (VeryDangerousDOS Class):

internalLoadSegment: bptrFileHandle ovlyTable: bptrTable
funcArray: fArray stackPtr: stack

ADosDanger 20 / 35

1.25 inhibit (DANGEROUS):

NAME
Inhibit -- Inhibits access to a filesystem

SYNOPSIS
BOOL success = Inhibit(char *filesystem, LONG flag);

FUNCTION
Sends an ACTION_INHIBIT packet to the indicated handler. This stops
all activity by the handler until uninhibited. When uninhibited,
anything may have happened to the disk in the drive, or there may no
longer be one.

INPUTS
filesystem - Name of device to inhibit (with ’:’)
flag - New status. DOSTRUE = inhibited,

FALSE = uninhibited

AMIGATALK INTERFACE (DangerousDOS Class):

inhibit: fileSystem flags: flag

1.26 fWrite (DANGEROUS):

NAME
FWrite -- Writes a number of blocks to an output (buffered)

SYNOPSIS
LONG count = FWrite(BPTR fh, char *buf, ULONG blocklen, ULONG blocks)

FUNCTION
Attempts to write a number of blocks, each blocklen long, from the
specified buffer to the output stream. May return less than the
number of blocks requested, if there is some error such as a full
disk or r/w error. This call is buffered.

INPUTS
fh - filehandle to use for buffered I/O
buf - Area to write bytes from.
blocklen - number of bytes per block. Must be > 0.
blocks - number of blocks to write. Must be > 0.

RESULT
count - Number of _blocks_ written. On an error, the number of

blocks actually written is returned.

BUGS
Doesn’t clear IoErr() before starting. If you want to find out
about errors, use SetIoErr(0) before calling.

SEE ALSO
FPutC , FRead ,
FPuts

ADosDanger 21 / 35

AMIGATALK INTERFACE (DangerousDOS Class):

fileWrite: bptrFileHandle to: aBuffer blkSize: blockLength
count: blockCount

1.27 freeDosObject (DANGEROUS):

NAME
FreeDosObject -- Frees an object allocated by

AllocDosObject()
SYNOPSIS

void FreeDosObject(ULONG type, void *ptr);

FUNCTION
Frees an object allocated by AllocDosObject(). Do NOT call for
objects allocated in any other way.

INPUTS
type - type passed to AllocDosObject()
ptr - ptr returned by AllocDosObject()

BUGS
Before V39, DOS_CLI objects will only have the struct
CommandLineInterface freed, not the strings it points to. This
is fixed in V39 dos. Before V39, you can workaround this bug by
using FreeVec() on cli_SetName, cli_CommandFile, cli_CommandName,
and cli_Prompt, and then setting them all to NULL. In V39 or
above, do NOT use the workaround.

SEE ALSO

AllocDosObject
, FreeVec, <dos/dos.h>

AMIGATALK INTERFACE (DangerousDOS Class):

freeDosObject: dosObject type: t " Tested "

1.28 freeDosEntry (DANGEROUS):

NAME
FreeDosEntry -- Frees an entry created by MakeDosEntry

SYNOPSIS
void FreeDosEntry(struct DosList *dlist);

FUNCTION
Frees an entry created by MakeDosEntry(). This routine should be
eliminated and replaced by a value passed to FreeDosObject()!

ADosDanger 22 / 35

INPUTS
dlist - DosList to free.

SEE ALSO

AddDosEntry
,
RemDosEntry

,
FindDosEntry , LockDosList ,
NextDosEntry , MakeDosEntry

AMIGATALK INTERFACE (DangerousDOS Class):

freeDosEntry: dosListObject

1.29 freeDeviceProc (DANGEROUS):

NAME
FreeDeviceProc -- Releases port returned by GetDeviceProc()

SYNOPSIS
void FreeDeviceProc(struct DevProc *devproc);

FUNCTION
Frees up the structure created by GetDeviceProc(), and any associated
temporary locks.

Decrements the counter incremented by GetDeviceProc(). The counter
is in an extension to the 1.3 process structure. After calling
FreeDeviceProc(), do not use the port or lock again! It is safe to
call FreeDeviceProc(NULL).

INPUTS
devproc - A value returned by GetDeviceProc()

BUGS
Counter not currently active in 2.0.

SEE ALSO
GetDeviceProc ,

DeviceProc
,

AssignLock , AssignLate ,
AssignPath

AMIGATALK INTERFACE (DangerousDOS Class):

freeDeviceProcess: devProcessObject

ADosDanger 23 / 35

1.30 freeArgs (DANGEROUS):

NAME
FreeArgs - Free allocated memory after ReadArgs()

SYNOPSIS
void FreeArgs(struct RDArgs *rdargs);

FUNCTION
Frees memory allocated to return arguments in from ReadArgs(). If
ReadArgs allocated the RDArgs structure it will be freed. If NULL
is passed in this function does nothing.

INPUTS
rdargs - structure returned from ReadArgs() or NULL.

SEE ALSO
ReadArgs , ReadItem ,
FindArg

AMIGATALK INTERFACE (DangerousDOS Class):

freeArgs: rdArgsObject

1.31 format (VERY DANGEROUS):

NAME
Format -- Causes a filesystem to initialize itself

SYNOPSIS
BOOL success = Format(char *filesystem, char *volumename,

ULONG dostype);

FUNCTION
Interface for initializing new media on a device. This causes the
filesystem to write out an empty disk structure to the media, which
should then be ready for use. This assumes the media has been low-
level formatted and verified already.

The filesystem should be inhibited before calling Format() to make
sure you don’t get an ERROR_OBJECT_IN_USE.

INPUTS
filesystem - Name of device to be formatted. ’:’ must be supplied.
volumename - Name for volume (if supported). No ’:’.
dostype - Type of format, if filesystem supports multiple types.

BUGS
Existed, but was non-functional in V36 dos. (The volumename wasn’t

converted to a BSTR.) Workaround: Require V37, or under V36
convert volumename to a BPTR to a BSTR before calling Format().
Note: A number of printed packet docs for ACTION_FORMAT are wrong
as to the arguments.

ADosDanger 24 / 35

AMIGATALK INTERFACE (VeryDangerousDOS Class):

formatDisk: diskName on: volumeName type: dosType

1.32 exitProgram (DANGEROUS):

NAME
Exit -- Exit from a program

SYNOPSIS
void Exit(LONG returnCode);

FUNCTION
Exit() is currently for use with programs written as if they
were BCPL programs. This function is not normally useful for
other purposes.

In general, therefore, please DO NOT CALL THIS FUNCTION!

In order to exit, C programs should use the C language exit()
function (note the lower case letter "e"). Assembly programs should
place a return code in D0, and execute an RTS instruction with
their original stack ptr.

IMPLEMENTATION

The action of Exit() depends on whether the program which called it
is running as a command under a CLI or not. If the program is

running under the CLI the command finishes and control reverts to
the CLI. In this case, returnCode is interpreted as the return code
from the program.

If the program is running as a distinct process, Exit() deletes the
process and release the space associated with the stack, segment
list and process structure.

INPUTS
returnCode - integer

SEE ALSO

CreateProc
,
CreateNewProc

AMIGATALK INTERFACE (DangerousDOS Class):

exitProgram: returnCode

1.33 doPacket (VERY DANGEROUS):

ADosDanger 25 / 35

NAME
DoPkt -- Send a dos packet and wait for reply

SYNOPSIS
LONG result1 = DoPkt(struct MsgPort *port, LONG action,

LONG arg1, LONG arg2, LONG arg3,
LONG arg4, LONG arg5);

FUNCTION
Sends a packet to a handler and waits for it to return. Any secondary
return will be available in D1 AND from IoErr() . DoPkt() will work

even if the caller is an exec task and not a process; however it will
be slower, and may fail for some additional reasons, such as being
unable to allocate a signal. DoPkt() uses your pr_MsgPort for the
reply, and will call pr_PktWait. (See BUGS regarding tasks, though).

Only allows 5 arguments to be specified. For more arguments (packets
support a maximum of 7) create a packet and use

SendPkt()
/
WaitPkt()

.

INPUTS
port - pr_MsgPort of the handler process to send to.
action - the action requested of the filesystem/handler
arg1, arg2, arg3, arg4,arg5 - arguments, depend on the action & may not

all be required.

RESULT
result1 - the value returned in dp_Res1, or FALSE if there was some

problem in sending the packet or recieving it.
result2 - Available from IoErr() AND in register D1.

BUGS
Using DoPkt() from tasks doesn’t work in V36.

Use
AllocDosObject()

, PutMsg(), and WaitPort()/GetMsg()
for a workaround, or you can call

CreateNewProc()
to start a process to

do Dos I/O for you. In V37, DoPkt() will allocate, use, and free the
MsgPort required.

NOTES
Callable from a task (under V37 and above).

SEE ALSO

AllocDosObject
,
FreeDosObject

,

SendPkt

ADosDanger 26 / 35

,
WaitPkt

,

CreateNewProc
, AbortPkt

AMIGATALK INTERFACE (VeryDangerousDOS Class):

doPacket: action onPort: msgPort arguments: argArray

1.34 deviceProc (DANGEROUS):

NAME
DeviceProc -- Return the process MsgPort of specific I/O handler

SYNOPSIS
struct MsgPort *process = DeviceProc(char *name);

FUNCTION
DeviceProc() returns the process identifier of the process which
handles the device associated with the specified name. If no

process handler can be found then the result is zero. If the name
refers to an assign then a directory lock is returned in IoErr() .
This lock should not be UnLock() ed or Examine() ed (if you wish to do
so, DupLock() it first).

BUGS
In V36, if you try to DeviceProc() something relative to an assign

made with AssignPath() , it will fail. This is because there’s no
way to know when to unlock the lock. If you’re writing code for
V36 or later, it is highly advised you use GetDeviceProc() instead,
or make your code conditional on V36 to use GetDeviceProc()/

FreeDeviceProc()
.

SEE ALSO
GetDeviceProc ,

FreeDeviceProc
,

DupLock , UnLock ,
Examine

AMIGATALK INTERFACE (DangerousDOS Class):

makeDeviceProcess: deviceName

1.35 deleteVar (DANGEROUS):

ADosDanger 27 / 35

NAME
DeleteVar -- Deletes a local or environment variable

SYNOPSIS
BOOL success = DeleteVar(char *name, ULONG flags);

FUNCTION
Deletes a local or environment variable.

INPUTS
name - pointer to an variable name. Note variable names follow

filesystem syntax and semantics.
flags - combination of type of var to delete (low 8 bits), and

flags to control the behavior of this routine. Currently
defined flags include:

GVF_LOCAL_ONLY - delete a local (to your process) variable.
GVF_GLOBAL_ONLY - delete a global environment variable.

The default is to delete a local variable if found, otherwise
a global environment variable if found (only for LV_VAR).

RESULT
success - If non-zero, the variable was sucessfully deleted, FALSE

indicates failure.

BUGS
LV_VAR is the only type that can be global

SEE ALSO
GetVar , SetVar ,
FindVar ,

DeleteFile
,

<dos/var.h>

AMIGATALK INTERFACE (DangerousDOS Class):

deleteVar: varName flags: f

1.36 deleteFile (VERY DANGEROUS):

NAME
DeleteFile -- Delete a file or directory

SYNOPSIS
BOOL success = DeleteFile(char *name);

FUNCTION
This attempts to delete the file or directory specified by ’name’.
An error is returned if the deletion fails. Note that all the files
within a directory must be deleted before the directory itself can
be deleted.

ADosDanger 28 / 35

INPUTS
name - pointer to a null-terminated string

AMIGATALK INTERFACE (VeryDangerousDOS Class):

deleteFile: fileOrDirName

1.37 CreateProc (DANGEROUS):

NAME
CreateProc -- Create a new process

SYNOPSIS
struct MsgPort *process = CreateProc(char *name,

LONG pri,
BPTR seglist,
LONG stackSize)

FUNCTION
CreateProc() creates a new AmigaDOS process of name ’name’. AmigaDOS
processes are a superset of exec tasks.

A seglist, as returned by
LoadSeg()

, is passed as ’seglist’.
This represents a section of code which is to be run as a new
process. The code is entered at the first hunk in the segment list,
which should contain suitable initialization code or a jump to
such. A process control structure is allocated from memory and
initialized. If you wish to fake a seglist (that will never
have DOS UnLoadSeg() called on it), use this code:

DS.L 0 ;Align to longword
DC.L 16 ;Segment "length" (faked)
DC.L 0 ;Pointer to next segment
...start of code...

The size of the root stack upon activation is passed as
’stackSize’. ’pri’ specifies the required priority of the new
process. The result will be the process msgport address of the new
process, or zero if the routine failed. The argument ’name’
specifies the new process name. A zero return code indicates error.

The seglist passed to CreateProc() is not freed when it exits; it
is up to the parent process to free it, or for the code to unload
itself.

Under V36 and later, you probably should use
CreateNewProc()
instead.

INPUTS
name - pointer to a null-terminated string
pri - signed long (range -128 to +127)

ADosDanger 29 / 35

seglist - BCPL pointer to a seglist
stackSize - integer (must be a multiple of 4 bytes)

RESULT
process - pointer to new process msgport

SEE ALSO

CreateNewProc
,
LoadSeg

,

UnLoadSeg

AMIGATALK INTERFACE (DangerousDOS Class):

createProcess: processName priority: pri
segments: bptrSegmentList stack: stackSize

1.38 createNewProc (DANGEROUS):

NAME
CreateNewProc -- Create a new process

SYNOPSIS
struct Process *process = CreateNewProc(struct TagItem *tags);

FUNCTION
This creates a new process according to the tags passed in. See
dos/dostags.h for the tags.

You must specify one of NP_Seglist or NP_Entry. NP_Seglist takes a
seglist (as returned by LoadSeg()). NP_Entry takes a function
pointer for the routine to call.

There are many options, as you can see by examining dos/dostags.h.
The defaults are for a non-CLI process, with copies of your
CurrentDir, HomeDir (used for PROGDIR:), priority, consoletask,
windowptr, and variables. The input and output filehandles default
to opens of NIL:, stack to 4000, and others as shown in dostags.h.
This is a fairly reasonable default setting for creating threads,
though you may wish to modify it (for example, to give a descriptive
name to the process.)

CreateNewProc() is callable from a task, though any actions that
require doing Dos I/O (DupLock() of currentdir, for example) will not
occur.

NOTE: If you call CreateNewProc() with both NP_Arguments, you must
not specify an NP_Input of NULL. When NP_Arguments is specified, it
needs to modify the input filehandle to make ReadArgs() work properly.

INPUTS

ADosDanger 30 / 35

tags - a pointer to a TagItem array.

RESULT
process - The created process, or NULL. Note that if it returns

NULL, you must free any items that were passed in via
tags, such as if you passed in a new current directory
with NP_CurrentDir.

BUGS
In V36, NP_Arguments was broken in a number of ways, and probably
should be avoided (instead you should start a small piece of your
own code, which calls

RunCommand()
to run the actual code you wish

to run). In V37, NP_Arguments works, though see the note above.

SEE ALSO

LoadSeg
,
CreateProc

,
ReadArgs ,

RunCommand
,

<dos/dostags.h>

AMIGATALK INTERFACE (DangerousDOS Class):

createNewProcess: tagArray

1.39 cliInitRun (DANGEROUS):

NAME
CliInitRun -- Set up a process to be a shell from initial packet

SYNOPSIS
LONG flags = CliInitRun(struct DosPacket *packet);

FUNCTION
This function initializes a process and CLI structure for a new
shell, from parameters in an initial packet passed by the system

(Run, System(), Execute()). The format of the data in the packet
is purposely not defined. The setup includes all the normal fields
in the structures that are required for proper operation (current
directory, paths, input streams, etc).

It returns a set of flags containing information about what type
of shell invocation this is.

Definitions for the values of fn:
Bit 31 Set to indicate flags are valid
Bit 3 Set to indicate asynch system call

ADosDanger 31 / 35

Bit 2 Set if this is a System() call
Bit 1 Set if user provided input stream
Bit 0 Set if RUN provided output stream

If Bit 31 is 0, then you must check IoErr() to determine if an error
occurred. If IoErr() returns a pointer to your process, there has
been an error, and you should clean up and exit. The packet will
have already been returned by

CliInitNewcli()
. If it isn’t a pointer

to your process and Bit 31 is 0, you should wait before replying
the packet until after you’ve loaded the first command (or when you
exit). This helps avoid disk "gronking" with the Run command.
(Note: This is different from what you do for CliInitNewcli().)

If Bit 31 is 1, then if Bit 3 is one, ReplyPkt() the packet
immediately (Asynch System()), otherwise wait until your shell exits
(Sync System(), Execute()).
(Note: This is different from what you do for CliInitNewcli().)

This function is very similar to CliInitNewcli().

INPUTS
packet - the initial packet sent to your process MsgPort

RESULT
fn - flags or a pointer

SEE ALSO

CliInitNewcli()
,
ReplyPkt

,

WaitPkt
, Execute ,

IoErr , System()

AMIGATALK INTERFACE (DangerousDOS Class):

cliInitRun: dosPacketObject

1.40 cliInitNewcli (DANGEROUS):

NAME
CliInitNewcli -- Set up a process to be a shell from initial packet

SYNOPSIS
LONG flags = CliInitNewcli(struct DosPacket *packet);

FUNCTION
This function initializes a process and CLI structure for a new
shell, from parameters in an initial packet passed by the system

ADosDanger 32 / 35

(NewShell or NewCLI, etc). The format of the data in the packet
is purposely not defined. The setup includes all the normal fields
in the structures that are required for proper operation (current
directory, paths, input streams, etc).

It returns a set of flags containing information about what type
of shell invocation this is.

Definitions for the values of fn:
Bit 31 Set to indicate flags are valid
Bit 3 Set to indicate asynch system call
Bit 2 Set if this is a System() call
Bit 1 Set if user provided input stream
Bit 0 Set if RUN provided output stream

If Bit 31 is 0, then you must check IoErr() to determine if an error
occurred. If IoErr() returns a pointer to your process, there has
been an error, and you should clean up and exit. The packet will
have already been returned by CliInitNewcli(). If it isn’t a pointer
to your process and Bit 31 is 0, reply the packet immediately.
(Note: This is different from what you do for

CliInitRun()
.)

This function is very similar to CliInitRun().

INPUTS
packet - the initial packet sent to your process MsgPort

RESULT
fn - flags or a pointer

SEE ALSO

CliInitRun()
,
ReplyPkt

,

WaitPkt
, IoErr

AMIGATALK INTERFACE (DangerousDOS Class):

cliInitNewCLI: dosPacketObject

1.41 attemptLockDosList (DANGEROUS):

NAME
AttemptLockDosList -- Attempt to lock the Dos Lists for use

SYNOPSIS
struct DosList *dlist = AttemptLockDosList(ULONG flags);

ADosDanger 33 / 35

FUNCTION
Locks the dos device list in preparation to walk the list. If the
list is ’busy’ then this routine will return NULL. See LockDosList()
for more information.

INPUTS
flags - Flags stating which types of nodes you want to lock.

RESULT
dlist - Pointer to the beginning of the list or NULL. Not a valid

node!

BUGS
In V36 through V39.23 dos, this would return NULL or 0x00000001 for
failure. Fixed in V39.24 dos (after kickstart 39.106).

SEE ALSO
LockDosList , UnLockDosList ,
NextDosEntry , Forbid()

AMIGATALK INTERFACE (DangerousDOS Class):

attemptLockDosList: flags

1.42 allocDosObject (DANGEROUS):

NAME
AllocDosObject -- Creates a dos object

SYNOPSIS
void *ptr = AllocDosObject(ULONG type, struct TagItem *tags);

FUNCTION
Create one of several dos objects, initializes it, and returns it
to you. Note the DOS_STDPKT returns a pointer to the sp_Pkt of the
structure.

This function may be called by a task for all types and tags defined
in the V37 includes (DOS_FILEHANDLE through DOS_RDARGS and ADO_FH_Mode
through ADO_PromptLen, respectively). Any future types or tags
will be documented as to whether a task may use them.

INPUTS
type - type of object requested
tags - pointer to taglist with additional information

RESULT
packet - pointer to the object or NULL

BUGS
Before V39, DOS_CLI should be used with care since

FreeDosObject()
can’t free it.

SEE ALSO

ADosDanger 34 / 35

FreeDosObject
,

<dos/dostags.h>, <dos/dos.h>

AMIGATALK INTERFACE (DangerousDOS Class):

allocDosObject: type tags: tagArray " Tested "

1.43 addSegment (VERY DANGEROUS):

NAME
AddSegment - Adds a resident segment to the resident list

SYNOPSIS
BOOL success = AddSegment(char *name, BPTR seglist, LONG type)

FUNCTION
Adds a segment to the Dos resident list, with the specified Seglist
and type (stored in seg_UC - normally 0). NOTE: Currently unused
types may cause it to interpret other registers (D4-?) as additional
parameters in the future.

Do NOT build Segment structures yourself!

INPUTS
name - name for the segment
seglist - Dos seglist of code for segment
type - initial usecount, normally 0

RESULT
success - success or failure

SEE ALSO
FindSegment ,

RemSegment
,

LoadSeg

AMIGATALK INTERFACE (VeryDangerousDOS Class):

addSegment: bptrSegList named: segmentName useCount: count

1.44 addDosEntry (DANGEROUS):

NAME
AddDosEntry -- Add a Dos List entry to the lists

SYNOPSIS

ADosDanger 35 / 35

LONG success = AddDosEntry(struct DosList *dlist);

FUNCTION
Adds a device, volume or assign to the dos devicelist. Can fail if it
conflicts with an existing entry (such as another assign to the same

name or another device of the same name). Volume nodes with different
dates and the same name CAN be added, or with names that conflict with
devices or assigns. Note: The dos list does NOT have to be locked to
call this. Do not access dlist after adding unless you have locked the
Dos Device list.

An additional note concerning calling this from within a handler:
in order to avoid deadlocks, your handler must either be multi-
threaded, or it must attempt to lock the list before calling this
function. The code would look something like this:

if (AttemptLockDosList(LDF_xxx | LDF_WRITE))
{
rc = AddDosEntry(...);
UnLockDosList(LDF_xxx | LDF_WRITE);
}

If
AttemptLockDosList()
fails (i.e. it’s locked already), check for

messages at your filesystem port (don’t wait!) and try the
AttemptLockDosList() again.

INPUTS
dlist - Device list entry to be added.

RESULT
success - Success/Failure indicator

SEE ALSO

RemDosEntry
, FindDosEntry ,

NextDosEntry , LockDosList ,
MakeDosEntry ,

FreeDosEntry
,

AttemptLockDosList

AMIGATALK INTERFACE (DangerousDOS Class):

addDosEntry: dosListObject

	ADosDanger
	AmigaTalk to AmigaDOS Help:
	VERY DANGEROUS AmigaDOS Methods:
	writeFile (DANGEROUS):
	waitPkt (VERY DANGEROUS):
	unLoadSeg (VERY DANGEROUS):
	systemTagList (VERY DANGEROUS):
	setVBuf (DANGEROUS):
	setFileSysTask (VERY DANGEROUS):
	setFileSize (DANGEROUS):
	setConsoleTask (VERY DANGEROUS):
	setArgStr (DANGEROUS):
	sendPkt (VERY DANGEROUS):
	selectOutput (DANGEROUS):
	selectInput (DANGEROUS):
	seekFile (DANGEROUS):
	runCommand (DANGEROUS):
	replyPkt (DANGEROUS):
	remSegment (VERY DANGEROUS):
	remDosEntry (VERY DANGEROUS):
	remAssignList (VERY DANGEROUS):
	newLoadSeg (VERY DANGEROUS):
	loadSeg (VERY DANGEROUS):
	internalUnLoadSeg (VERY DANGEROUS):
	internalLoadSeg (VERY DANGEROUS):
	inhibit (DANGEROUS):
	fWrite (DANGEROUS):
	freeDosObject (DANGEROUS):
	freeDosEntry (DANGEROUS):
	freeDeviceProc (DANGEROUS):
	freeArgs (DANGEROUS):
	format (VERY DANGEROUS):
	exitProgram (DANGEROUS):
	doPacket (VERY DANGEROUS):
	deviceProc (DANGEROUS):
	deleteVar (DANGEROUS):
	deleteFile (VERY DANGEROUS):
	CreateProc (DANGEROUS):
	createNewProc (DANGEROUS):
	cliInitRun (DANGEROUS):
	cliInitNewcli (DANGEROUS):
	attemptLockDosList (DANGEROUS):
	allocDosObject (DANGEROUS):
	addSegment (VERY DANGEROUS):
	addDosEntry (DANGEROUS):

